
Detecting Malicious PDF Files Using Semi-
Supervised Learning Method

Di Feng1,2, Min Yu1,4,* , Yongjian Wang3,* , Chao Liu1 and Chunguang Ma2
1Institution of Information Engineering, Chinese Academy of Sciences, Beijing, China

2College of Computer Science and Technology, Harbin Engineering University, Harbin, China
3Key Laboratory of Information Network Security of Ministry of Public Security, the Third

Research Institute of Ministry of Public Security, Shanghai, China
4School of Cyber Security, University of Chinese Academy of Sciences, Beijing, China

yumin@iie.ac.cn, wangyongjian@stars.org.cn
*corresponding author

Keywords: malicious PDF files, malicious JavaScript, semi-supervised learning.

Abstract. With the increase in popularity of Portable Document Format (PDF) documents
and increasing vulnerability of PDF users, effective detection of malicious PDF documents
has become as a more and more significant issue. In this paper, we proposed a way to
detect malicious PDF files by using semi-supervise learning method. Compare with
previous studies, this method not only improve detection accuracy and generalization
ability by combining with three different classifiers, but also effectively utilize the
abundant unlabeled PDF files to retrain classifiers and update module by selecting the
“useful” files from unlabeled test set.

1. Introduction

With the increase in popularity of PDF documents, malicious PDF files have become a well-
known threaten during the past years. PDF files have been one of the most successful attacking
vectors, because it is suitable both for sending emails containing malware and for infections via
download [1].

 In recent years, more and more scholars have begun to focus on the research of malicious PDF
files. There are two categories for taxonomy of academic research on detection methods of
malicious PDF files: Static analysis and Dynamic analysis. Static analysis including three different
methods: based on embedded JavaScript content in PDF [2-3], based on metadata of PDF [4-5],
based on document structure [6-7]. These methods have achieved some progress in the detection of
malicious PDF files. However, all of them only focus on using labeled samples, none of them has
make full use of the unlabeled samples [8].But in many real-world tasks, the number of labeled
training samples is limited due to that labeling the examples requires human efforts and expertise.
Abundant unlabeled samples still have not been exploited.

Obviously, it is difficult to have good generalization ability by a poor trained classifier. On the
other hand, it is wasting resources without using these unlabeled samples. In this paper, a way to

1

The 5th International Conference on Advanced Computer Science Applications and Technologies (ACSAT 2017)

Published by CSP © 2017 the Authors

detect malicious PDF files by using semi-supervised learning methods has been proposed.
Experiments show that this method can improve detection accuracy and generalization ability by
combining with three different classifiers to jointly vote, which can effectively utilize the abundant
unlabeled PDF files to retrain classifiers and update module by selecting the “useful” files from test
set.

 The paper is divided into five Sections including this one. Section1 introduces the background
and significance of this study. Section2 introduce PDF format, JavaScript in PDF and how features
will be selected in this study. Section3 describes the detail of how to train and retrain the classifiers
and how to detect malicious PDF files. Section4 provides the experimental results and analysis.
Section5 discusses the limits of our study and point out the future research direction.

2. About PDF Files

2.1. PDF File Format

The object is the basic data type in PDF file, there are mainly eight class object types[9] which
shown in Table1.

Table 1 The object types of PDF file.

object type description
Boolean Include logical value “true” and “false”
Numeric Can be divided into two types as integer and real number
String Consists of a string of bytes, through the “()” contains a string or the “<>” contains

a hex string
Name Consists of “/” and a string of characters, with uniqueness
Array Can be composed of a series of different types of one-dimensional objects
Dictionary Consists of a series of entries which have two parts, the first part is the keyword of

the entry(usually name object), the second part is the content of the entry
Stream Consists of a string between keyword ”stream” and “endstream”, and without

length limitation
Null Represents an null object

 PDF file structure is composed of header, body, cross-reference table and trailer.
 Header: Used to indicate the version of the PDF file. Take the form of “PDF - [version

number]” in the first line of the PDF file.
 Body: Body mainly contains the contents of the PDF file which is shown to the user. Each part

is presented by the object, which constitutes the specific content of the PDF file, such as fonts,
pages and images.

 Cross-reference table: Cross-reference table is a kind of special organization in PDF file. It
lists the indirect objects and their location in the file, allows random access to objects in cross-
reference table, so that reader can quickly locate the objects in the PDF file.

 Trailer: Trailer provides the location of cross-reference table. By parsing trailer, application
can find the cross-reference table and other special objects easily. And trailer also contains a
dictionary object, which provides some relevant information about PDF file, such as global
information (author, keyword, title) and encryption information.

 On the other hand, a PDF file can be seen as a hierarchy structure and consist of objects in the
body. The core of hierarchy structure is catalog, a kind of dictionary object. Through catalog, other
important information about PDF file can be collected, including page dictionary, names dictionary,
outlines dictionary and so on. The hierarchy structure can be shown as a tree in Figure.1.

2

Figure 1 The hierarchy structure of PDF file.

2.2. JavaScript in PDF

There are many attack methods used in malicious PDF files, include attacking on Adobe
JavaScript API, heap spray attacks, embedded other malicious files, etc. A lot of investigations and
researches show that most malicious PDF files using JavaScript codes when performing malicious
functions. So in this paper, we focus on JavaScript codes which embedded in PDF files and select
features that based on JavaScript codes contents for later analysis.

 JavaScript codes usually appears after the “/JS” by direct references or indirect references.
There are many known locations where JS can be found: The AA entry of a dictionary contains an
additional annotation dictionary, and every entry in an additional annotations dictionary should be
an action dictionary, which can contain JS; The OpenAction entry of a dictionary also can contain
JS; A page tree consists of a tree of page tree node dictionaries and page dictionaries. The page
dictionaries are the leaves of the tree and they can contain references to JS in the AA and
annotations entries; An outline tree consists of a tree of outline dictionaries and outline item
dictionaries. The latter are the leaves of the tree, they can contain references to action dictionaries
containing JS; Forms are structured in a tree and the leaves can contain references to JS; A PDF
file's name tree can contain JavaScript that gets executed on document load.

2.3. Features Select

For the JavaScript codes embedded in PDF files, we adopt N-gram algorithm for features
extraction. N-gram is a kind of text or language analysis algorithm that based on Markov chain,
which has been widely used in the static test of malicious codes. In the detection of malicious PDF
files, N-gram algorithm was adopted to extract the JavaScript codes and analysis whether the codes
has certain characteristics or not. These features will be used for detection model building as
multidimensional vectors. There are some common features listed in Table 2 which usually be
selected in malicious after features extraction.

3

Table 2 Some common features of malicious PDF files.

feature description
for A feature that represent a large number of cycles appear in codes
while Same as above
eval Calculation of a string and the implementation of the JavaScript

codes
escape Used to encode string
unescape Used to decode the string which encoded by escape()
fromCharCode Used to decode encoded strings for execution using eval()
replace Replace statement in JavaScript
spray A keyword of heap spray
%u Same as above
util.printf A function used in heap spray attacks
getAnnots Get annotation objects
customDictionaryOpen Open the dictionary object

3. The Proposed Framework and Classification Method

3.1. Overview

The process of detecting malicious PDF files in our framework mainly consists of two parts:
Known files module and Detection module. Figure.2 shows the framework and the process of
detecting and acquiring new malicious PDF files by maintaining the updatability of the known files
module and detection module.

Known files module composed of known malicious files, both of the labeled malicious PDF files
from original samples set and the new received files which classifiers consider as malicious
obviously. When new unlabeled sample PDF files are accepted, it will be compared with the known
files module to determine whether it is malicious, by calculating the MD5 value. If the MD5 value
of the file has been stored in the module, it will considered as malicious decisively without
delivering to the classifiers.

Figure 2 The process of detecting and retraining.

4

Detection and training module is trained and retrained by tri-training algorithm which Zhou et al.
proposed in[10][11]. Tri-training algorithm is a kind of effective semi-supervised learning method.
It attempts to exploit unlabeled data using three classifiers, and which focus on how to efficiently
select most confidently predicted unlabeled samples to label and produce final hypothesis. It will be
described in detail in section3.2. On the other hand, for the remaining PDF files which are unknown
and have been transformed into feature vectors, this module will classify these files into two
categories: malicious and benign. And this module select the “useful” files from unlabeled files,
which utilized to rich known files module and update the classifiers. These processes will be
explained in detail in section3.3.

3.2. Tri-training Algorithm

Let L denote the collection of original labeled data, U denote the collect of all unlabeled data.
Training set L1, L2, L3 is bootstrap sampled from sample set L. Correspondingly, h1, h2, h3 are three
initial classifiers generated by training L1, L2, L3. The purpose is to make three classifiers h1, h2, h3
different from each other, so integrate them to work can improve detection precision and
generalization ability. xi is an arbitrary test sample in U. In each round, if h1 and h2 have same
classification result for xi while h3 have an opposite result, then in next round, add xi to the training
set L’3, L’3 = L3∪ { xi| xi∈U and h1(xi) = h2(xi)}; a similar method to produce L’1, L’2. Using these
new generated training set to update the classifiers h1, h2, h3 in each round, until the classifiers do
not change obviously or satisfied certain conditions.

The Tri-training algorithm can adopt an implicit confidence measurement by majority voting,
which improves the efficiency of the training process. However, this implicit confidence
measurement might generate false positives and introduce noise into training set. In order to avoid
the influence of noise, the criterion based on theoretical results of learning from noisy examples is
derived as follow:

If a sequence σ of m samples is drawn, where the sample size m satisfies (1)

 
)

2
ln(

21

2
2 

N
m




 (1)
where ζ is the hypothesis worst-case classification error rate, η (<0.5) is an upper bound on the

classification noise rate, N is the number of hypotheses, and δ is the confidence, then a hypothesis
Hi that minimizes disagreement with σ will have the PAC property, i.e.

    *,Pr HHd i (2)
Where d (,) is the sum over the probability of elements from the symmetric difference between

the two hypothesis sets Hi and H* (the ground-truth). Then, the u can define as

 2
2

21
2

ln
2 










 m

N
u

 (3)
For each classifier, in order to keep improving the performance in the training process, the u

value of the current round should be greater than that in its previous round. Let Lt and Lt-1 denote
the newly labeled data set of a classifier in the t-th round and (t-1)-th round, respectively. Then the
training sets for this classifier in the t-th round and (t-1)-th round are L∪Lt of the size of |L∪Lt |
and L∪Lt-1 of the size of |L∪Lt-1|, respectively. Let et and et-1 denote the upper bound of the
classification error rate of the hypothesis derived from the combination of the other two classifiers
in the t-th round and (t-1)-th round, respectively. The condition that a classifier’s performance can
be improved through the refinement in the t-th round is shown as (4)

5

10
1

1




 t

t

t

t

L

L

e

e

 (4)
In order to ensure that the (4) is established, Lt is randomly subsampled to size s as following.
















1
11

t

tt

e

Le
s

 (5)
And Lt-1 should satisfy (5).

tt

t
t

ee

e
L


 


1

1

 (6)

3.3. Detection and Updating

Generally, compared with previous semi-supervised learning method, tri-training requires neither
the existence of views nor special learning algorithm. So in our work, we employed the SVM
algorithm using the radial basis function kernel function as learning algorithms. We employed the
SVM as learning algorithm for the following reasons: 1) SVM has been successfully used to detect
worms and malware. 2) The classifier trained by SVM algorithm is black-box that is hard for
attackers to understand. 3) SVM has the ability to handle large numbers of features, which makes it
suitable for detecting malicious files.

Figure 3 The detection method.

When detection module h received unknown and unlabeled PDF files, these files will be
delivered to three classifiers h1, h2, h3 and each of them will be classified independently. At last,
through majority voting, detection module h decides these files whether be malicious or not. For a
certain file xi, several results will appear: 1) If all the classifiers consider xi as benign, detection
module also consider it as benign. 2) If all the classifiers consider xi as malicious, detection module
also consider it as malicious. 3) If two of the classifiers consider xi as malicious or benign and the
other one consider it conversely, then three classifiers are combined by majority voting. e.g:
h1(xi)=h2(xi)≠h3(xi), then h(xi)=h1(xi)=h2(xi). Which shown as in Figure.3. Unlabeled files which
result satisfy one of the latter two conditions will be selected as “useful” files to update the system.

The first type of “useful” files which all the classifiers consider it as malicious, will be labeled as
malicious and be acquired by the known files module to rich the malicious PDF files library. The
second type of “useful” files which two of the classifiers consider it as malicious or benign and the
other one consider it conversely, we adopt “majority teaches minority” strategy, two classifiers will
teach the third classifier on this sample. This file will be labeled by the majority classifiers, then add

6

it to third classifier’s training set. After the end of each round of classification, every classifier will
be retrained based on a training set that have been updated, the method to retrain classifier and
reduce the noise effects have been describe in section3.2.

4. Evaluation

4.1. Evaluation Standard

The recall and precision are two measures that widely used in information retrieval and statistical
classification filed to evaluate the quality of the results. So in our study, we use these two measures
as evaluation standard.

 Let the number of PDF files to be classified is N, the number of malicious files that be detected
correctly is Na, the number of benign files that be detected as malicious is Nb, the number of
malicious files that be detected as benign is Nc, the number of benign files that be detected correctly
is Nd. Obviously, N=Na+Nb+Nc+Nd; and the number of actual malicious files, expressed in Nm, Nm =
Na+Nc. Related definitions can refer to Figure.4.

Figure 4 Definition of sample set.

 Recall is the ratio of the number of malicious files that be detected to the number of actual
malicious files, represents how many malicious files that can be detected; Precision is the ratio of
the number of malicious files that be detected to the number of all files that be detected (including
both correct and false positives), represent how many file that be detected as malicious are accurate;
Let recall expressed in R, and precision expressed in P. Related definitions can refer to (7) and (8).

m

a

ca

a

N

N

NN

N
R 




 (7)

ba

a

NN

N
P




 (8)

4.2. Results and Analysis

In order to verify the effectiveness of our employed methods, a large number of file samples are
needed. There are 9861 PDF files that we collect from Internet in total, including 5518 malicious
files and 4343 benign files. 5218 malicious files and 4043 benign files are selected as original
sample set to extract features and generate detection model. The remaining files include 300
malicious files and 300 begin files, are divided into three groups, simultaneously test the sample
separately. After the end of each group test, classifiers will be retrained by utilizing these test
samples. Results can be seen in Table 3.

7

Table 3 Detected results of each group.

 Group 1 Group 2 Group 3
 Malicious Benign Malicious Benign Malicious Benign

Detected as Malicious 88 2 84 0 91 1
Detected as Benign 12 98 16 100 9 99

In Table 3, it can be seen that the detection method have an acceptable results for the test
samples. For these malicious PDF files, about ten documents are classified falsely as benign in each
group. It is the malicious samples which are not based on JavaScript codes, or falsely extracted
codes that lead to the produced omission; For these benign PDF files, few are classified as
malicious. Through analysis, we find that the false positive were produced due to they may use
some of the vulnerable methods in a standard manner, like getAnnots().

In order to compare with the semi-supervised learning methods that we employed, a single
classifier that based on SVM algorithm also adopted to test the sample. The recall and precision of
the two methods in this experiment are presented in Table 4.

Table 4 Comparison of recall and precision of two methods.

Semi-supervised learning methods Only adopt SVM
Group1 Group2 Group3 Group1 Group2 Group3

Recall 88% 84% 91% 82% 78% 84%
Precision 97.7% 100% 98.9% 97.6% 100% 98.8%

As shown in Table 4, precision of the two methods both are nearly 100%, which means most of
the files that be detected as malicious are certainly malicious, both of the methods produce few false
positive. But through attentive comparison it can be found that the former is still slightly higher
than the latter. About recall, both two methods have omission in detecting malicious, but the
methods we employed have higher recall than the other one, means the methods can detect more
malicious than the latter as we expect.

5. Conclusions and Future Work

In this paper, a framework that detecting malicious PDF files using semi-supervised learning
method were presented. This method is able to take advantage of a large number of unlabeled
samples in reality and have a better recall and precision compared with the traditional learning
methods in detecting malicious PDF files.

 But there are still a lot of problems that we should be paid attention to: Our research only focus
on malicious PDF files which based on JavaScript content. And we adopted an implicit confidence
measurement with the method of semi-supervised learning, which might not be as accurate as
explicit estimation. In future work, select the features of PDF files in other ways will be considered,
not only detect JavaScript codes that embedded in PDF files. And we will try to combine semi-
supervised learning method with the artificial to improve the accuracy of detecting malicious PDF
files.

Acknowledgements

This work is supported by Strategic Pilot Technology Chinese Academy of Sciences (No.
XDA06010703), National Natural Science Foundation of China (No. 61173008, 61402124,
61303244), Young Scholar Foundation of Institute (No. 1104005704) and Key Lab of Information
Network Security, Ministry of Public Security (No. C15607).

8

References

[1] AVE-TEST security report 2015/16. https://www.av-test.org/en/news/news-single-view/current-risk-scenario-
av-test-security-report-facts-at-a-glance/, 2016
[2] Laskov P, Srndic N. Static detection of malicious JavaScript-bearing PDF documents[C]// Twenty-Seventh
Computer Security Applications Conference, ACSAC 2011, Orlando, Fl, Usa, 5-9 December. DBLP, 2011:373-
382.
[3] Schmitt F, Gassen J, Gerhardspadilla E. PDF Scrutinizer: Detecting JavaScript-based attacks in PDF
documents[C]// Tenth International Conference on Privacy, Security and Trust. 2012:104-111.
[4] Smutz C, Stavrou A. Malicious PDF detection using metadata and structural features[C]// Computer Security
Applications Conference. 2012:239-248.
[5] Pareek H. Entropy and n-gram analysis of malicious PDF documents[J]. International Journal of Engineering,
2013.
[6] Srndic N, Laskov P. Detection of Malicious PDF Files Based on Hierarchical Document Structure. 20th
Annual Network & Distributed System Security Symposium,2013.
[7] Maiorca D, Ariu D, Corona I, et al. A structural and content-based approach for a precise and robust detection
of malicious PDF files[C]// International Conference on Information Systems Security and Privacy. 2015:27-36.
[8] Nissim N, Cohen A, Glezer C, et al. Detection of malicious PDF files and directions for enhancements: A
state-of-the art survey[J]. Computers & Security, 2015, 48(779):246-266.
[9] PDF Reference. http://www.adobe.com/devnet/pdf/pdf_reference.html, 2016.
[10] Zhou Z H, Li M. Tri-training: exploiting unlabeled data using three classifiers[J]. IEEE Transactions on
Knowledge & Data Engineering, 2005, 17(11):1529-1541.
[11] Zhou Z H. Semi-supervised learning by disagreement[J]. Knowledge and Information Systems, 2010,
24(3):415-439.

9

